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Kinetics in one-dimensional lattice gas and Ising models from time-dependent
density-functional theory
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Time-dependent density-functional theory, proposed recently in the context of atomic diffusion and nonequi-
librium processes in solids, is tested against Monte Carlo simulation. In order to assess the basic approximation
of that theory, the representation of nonequilibrium states by a local equilibrium distribution function, we focus
on one-dimensional lattice models, where all equilibrium properties can be worked exactly from the known
free energy as a functional of the density. This functional determines the thermodynamic driving forces away
from equilibrium. In our studies of the interfacial kinetics of atomic hopping and spin relaxation, we find
excellent agreement with simulations, suggesting that the method is also useful for treating more complex
problems.
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I. INTRODUCTION

Establishing a link between macroscopic laws of diffusi
and relaxation with a microscopic master equation for ato
degrees of freedom has remained a fundamental proble
nonequilibrium statistical mechanics. Moreover, numero
examples exist in metallurgy, semiconductor device techn
ogy, glass science, and polymer science, where control
the time development of microstructures is crucial in t
design of materials with special mechanical, electrical, a
magnetic properties. Hence, there is a need also from a p
tical viewpoint to derive tractable kinetic equations incorp
rating specific materials properties, so that processes
nucleation, spinodal decomposition, and magnetic relaxa
can be treated in a realistic manner.

The simplest approach is to study mean-field kinetic eq
tions, derived from the master equation by neglecting a
atomic correlation effects@1–3#. Such equations suffer from
the obvious drawback that their stationary solutions yield
mean-field phase diagram, which may differ even qual
tively from the correct phase diagram. Several routes
improvement have been proposed in the literature, includ
the path probability method@4,5#, effective Hamiltonian
methods @6# or time-dependent density-functional theo
~TDFT! @7–9#. The latter approach implements the idea
local equilibrium and leads to thermodynamic driving force
which in principle are derived from an exact free-ener
functional. Density functional theories are normally form
lated for continuous fluid systems@10#, but adaptation to
discrete lattice systems is straightforward@11,12#. In this
way one can obtain generalized mean-field kinetic equat
for single-particle or single-spin densities, which in princip
1063-651X/2002/65~6!/066112~8!/$20.00 65 0661
ic
in
s
l-
er

d
c-

-
ke
n

-
y

e
-
r
g

f
,

s

are consistent with the exact equilibrium properties. If ne
essary, additional approximations with respect to equilibri
quantities can be carried out in a separate step.

The above-mentioned kinetic theories mostly focus
purely dissipative processes in discrete lattice systems.
fluid systems, the derivation of nonlinear transport equati
for hydrodynamic variables is a more complicated subje
Some generalizations of Moris’ well-known projection o
erator technique and mode coupling approximations to s
ations far away from equilibrium@13,14#, have been applied
for example, to problems of nonlinear hydrodynamics,
glass transition@15#, and to granular flows@16#.

Our aim in this paper is to apply the TDFT scheme
purely dissipative ‘‘conserved’’ atomic migration and ‘‘non
conserved’’ spin dynamics processes in one-dimensional
tice models for which the exact free-energy functional
known. This enables us to separate out and to test the l
equilibrium assumption against Monte Carlo simulatio
Specifically, we study the temporal evolution of domai
with different ordering, and of the associated interface. I
demonstrated that in these problems the TDFT shows
markable quantitative accuracy, suggesting that this met
may be useful also under more general conditions.

In Sec. II we briefly recall our basic approach. Section
starts out with an exact free-energy functional for a on
dimensional lattice and provides expressions for local co
elators in terms of particle densities. With these results
arrive at a closed system of kinetic equations on the sin
particle level. Following the classification by Hohenberg a
Halperin @17# these equations take the form of generaliz
‘‘model B’’ or ‘‘model A’’ equations in cases of a conserve
or a nonconserved order parameter, respectively. Solv
©2002 The American Physical Society12-1
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these equations, we subsequently discuss the time evolu
of an initially sharp interface between two differently o
dered domains in both of these cases~Sec. IV!. Excellent
agreement with Monte Carlo simulations is found, in contr
to ordinary mean-field~MF! theory that produces substanti
deviations.

II. OVERVIEW OF TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY „TDFT …

FOR STOCHASTIC LATTICE SYSTEMS

A. Atomic hopping

Let us begin with hopping of particles on a lattice
equivalent sitesi, which are either simply occupied (ni51)
or vacant (ni50), so that occupation numbers satisfyni

2

5ni . The hopping process is described by a master equa
for probabilitiesP(n,t) of finding an occupational configu
ration n[$ni% at time t. As elementary steps we assum
moves of a single particle from an occupied site to a vac
nearest-neighbor site. The associated rateswi ,k(n) for adja-
cent sitesi and k to exchange their occupation satisfy th
detailed balance condition with respect to a given lattice
HamiltonianH(n).

A detailed description of TDFT is found in Ref.@8#.
Hence we need to recall only the main steps, and add s
remarks as to their physical content. The basic approxi
tion is to replace the distributionP(n,t) by the local equi-
librium distribution

Ploc~n,t !5
1

Z~ t !
expH 2bFH~n!1(

i
hi~ t !ni G J , ~1!

where deviations from equilibrium are represented in ter
of time-dependent single-particle fieldsh(t)5$hi(t)%. Z(t)
is a normalization factor, which at equilibrium@h(t)50# re-
duces to the canonical partition function. Requiring se
consistency on the single-particle level allows us to elimin
h(t) in favor of mean occupation numbersp(t)5$pi(t)%
with pi(t)5^ni& t , where^•••& t denotes an average with re
spect to the distribution~1!. In this way a closed system o
equations forp(t) can be derived.

To carry through this program we start from the equat
of continuity, which follows directly from the original maste
equation. Replacement of exact averages by local equ
rium averages gives

dpi~ t !

dt
1(

k
^ j i ,k& t50, ~2!

with known expressions@8# for the currentj i ,k(n) from sitei
to sitek in terms ofwi ,k(n). Notice that at any instant of time
the exponent in Eq.~1! describes an inhomogeneous latti
gas, which involves a spatially varying single-particle pote
tial h(t). Hence, calculation of averages from Eq.~1! is pre-
cisely the kind of problem treated by density-function
theory ~DFT! in classical statistical mechanics. There, o
considers a class of systems with fixed interactions and a
trary single-particle potentials, specified here byH(n) andh,
06611
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respectively. Averaged occupation numbers and correla
functions are determined from derivatives of a free-ene
functionalF(p) associated with the HamiltonianH(n). Spe-
cifically, p(t) is determined by the set of equations

hi~ t !1m i„p~ t !…5m tot , ~3!

with m tot the overall chemical potential, and

m i~p!5]F~p!/]pi , ~4!

the local chemical potential as functional ofp. Much expe-
rience has been gained during the last two decades on ho
constructF(p) from a given HamiltonianH(n). In the sub-
sequent considerations we, therefore, assumeF(p) to be
known. Since in the framework of DFT occupational corr
lation functions are functionals ofp, we can formally regard
Eq. ~2! as the desired closed set of equations forp(t).

In order to make this procedure explicit and to establis
connection with thermodynamic driving forces, we again
call Ref. @8#, where it is shown that the average current c
be written as

^ j i ,k& t5Mi ,k~ t !@Ai~ t !2Ak~ t !#. ~5!

The quantities

Ai~ t !5exp@bm i„p~ t !…# ~6!

are local activities, whose discrete gradient~along the bond
connectingi andk) plays the role of a thermodynamic forc
that drives the current. The quantity

Mi ,k~ t !5
1

2
^wi ,k~n! exp@b~hi~ t !ni1hk~ t !nk!#& t , ~7!

where Mi ,k(t)5Mk,i(t), is a mobility coefficient that de-
pends on the actual nonequilibrium state. Further discus
of Eq. ~7! simplifies when we choose the hopping rat
wi ,k(n) such that they depend only on the energy in t
initial state, i.e.,

wi ,k~n!5a@ni~12nk!e
bHi1nk~12ni !e

bHk#. ~8!

The first term describes hopping fromi to k, with a thermally
activated rate determined by the interaction energyHi of a
particle at sitei with its environment.a is some bare rate
constant. The reverse hopping process is described by
second term in Eq.~8!. With this expression forwi ,k(n), one
can show@8# that Eq.~7! transforms into

Mi ,k~ t !5a^~12ni !~12nk!& t . ~9!

At this stage,Mi ,k(t) does no longer explicitly depend onh.
Physically, Eq.~9! tells us that the mobility coefficient base
on Eq. ~8! is given by the nearest-neighbor vacancy c
relator.
2-2
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It should be kept in mind that in this TDFT scheme
deviations from equilibrium are described in a mean-fi
manner in the sense that the underlying distribution funct
~1! deviates from the canonical distribution merely by sing
particle terms. Relationships between occupational corr
tors and densitiesp(t), which enter this theory, are local i
time and are given by the equilibrium theory. This impli
the assumption that correlators relax fast to their local eq
librium values, compared with time scales characterizing
evolution of p(t). Ordinary kinetic mean-field theory is re
covered when we use mean-field expressions form i(p) and
replace Eq.~9! by Mi ,k

MF(t)5a(12pi(t))(12pk(t)). By
contrast, in TDFT the local chemical potential appearing
Eq. ~6! is defined by the exact chemical potential function
so that Eq.~2! together with Eq.~5! describes relaxation
towards the exact equilibrium state. Moreover, the expr
sion ~9! for the mobility preserves local correlation effects
the jump dynamics.

B. Spin relaxation

To exemplify the dynamics of a nonconserved order
rameter, we study spin relaxation in a kinetic Ising mod
Elementary transitions in the underlying master equation
supposed to be individual spin flipss i→2s i , where s i
561. By wi(s) we denote the associated rate in an init
spin configurations. The local equilibrium distribution
P( loc)(s,t) is analogous to Eq.~1!. It involves the Ising
Hamiltonian H(s) supplemented by time-dependent ma
netic fields h(t), which couple to the spins in the form
2( ihi(t)s i . As shown in the Appendix, the equations
motion read

d^s i& t

dt
52G i~ t !sinhbS ]F~^s& t!

]^s i& t
2hD , ~10!

with kinetic coefficients

G i~ t !52^wi~s!e2bhi (t)s i& t , ~11!

F is the intrinsic free-energy functional associated with
exchange interaction, andh an overall constant magneti
field. Equation~10! again displays the exact thermodynam
driving force in the spirit of TDFT. It can be regarded as
generalized ‘‘modelA’’ equation in the classification by Ho
henberg and Halperin@17#, whereas Eqs.~2!, ~5!, and ~6!
constitute generalized ‘‘modelB’’ equations. Note that suffi-
ciently close to equilibrium one can ignoreh(t) in Eq. ~11!
and linearize the sinh term in Eq.~10! to obtaind^s i& t /dt
.22b^wi(s)&eq(]F/]^s i& t2h). The kinetic coefficient is
then simply given by the equilibrium spin flip rat
^wi(s)&eq .

C. Consistency with thermodynamics

Finally it is easy to show that our evolution equations a
consistent with the second law of thermodynamics. The t
06611
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free energy decreases monotonously with time until the e
librium condition is satisfied. For hopping, the rate of chan
of the free energy is given by

dF

dt
5(

i

]F

]pi

dpi

dt

52kBT(
i ,k

M i ,kxi~exi2exk!

52
kBT

2 (
i ,k

M i ,k~xi2xk!~exi2exk!<0, ~12!

where we have used Eqs.~2!, ~5!, and~6! together with the
abbreviation ](bF/]pi)5xi , and Mi ,k5Mk,i . Currents
through the boundaries of the system are supposed to
zero. The inequality in Eq.~12! arises fromMi ,k.0, see Eq.
~7!, and from (x2y)(ex2ey).0 for xÞy. The equality sign
in Eq. ~12! holds if and only ifxi5xk for all i andk, which
means thatm i5const.

Similarly, for the kinetic Ising spin model, the total fre
energy including the coupling to the external fieldh satisfies

d

dt S F2h(
i

s i D 52kBT(
k

Gkxk sinhxk<0, ~13!

where xk5b(]F/]^sk& t2h). The inequality follows be-
causeGk.0 @see Eq.~11!# and x sinhx.0 for xÞ0. Equa-
tion ~13! becomes an equality if]F/]^sk& t5h for all k.

III. ONE DIMENSION: EXACT FUNCTIONALS

To test the local equilibrium distribution~1! it is desirable
to avoid any approximation with respect to static properti
This can be achieved by using exact free-energy function
which are available for certain one-dimensional syste
@18–20#.

A. Atomic hopping

For a lattice gas with nearest-neighbor interactions o
linear chain of sitesi; 1< i<M ; with occupied boundary
sites ati 50 and i 5M11, the free-energy functional read
@19#

F$p%5V(
i 50

M

pi 11,i
(1) 1kBT (

i 50

M21 F (
n51

4

pi 11,i
(n) ln pi 11,i

(n) 2pi lnpi

2~12pi !ln~12pi !G , ~14!

whereV denotes the interaction constant, andpi 11,i
(n) with n

51, . . . ,4 are thetwo-point correlators for the four possibili
ties of particles and holes on sitei and sitei 11,

pi 11,i
(1) 5^ni 11ni&,
2-3
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pi 11,i
(2) 5^~12ni 11!ni&5pi2pi 11,i

(1) ,

pi 11,i
(3) 5^ni 11~12ni !&5pi 112pi 11,i

(1) ,

pi 11,i
(4) 5^~12ni 11!~12ni !&512pi2pi 111pi 11,i

(1) .
~15!

From the techniques of Ref.@19# it follows that

pi 11,i
(1) pi 11,i

(4) 5pi 11,i
(2) pi 11,i

(3) e2bV, ~16!

a relation, which is equivalent to the quasichemical a
proach. Given these relations, it turns out that]F/]pi 11,i

(1)

50. This suggests thatF may be minimized also with re
spect to correlators in cases where these cannot be calcu
explicitly.

The boundary conditions for the correlators arep1,0
(1)5p1

and pM11,M
(1) 5pM . For 1< i<M21, combination of Eq.

~15! with Eq. ~16! yields a quadratic equation forpi 11,i
(1) . In

this way the representation ofpi 11,i
(n) as functionals ofp is

completed. The fact thatpi 11,i
(n) only depends onpi 11 andpi

clearly is a special feature in one dimension.
The kinetic equations derived in Sec. II are now combin

with Eq. ~14!. Evidently, from Eq.~9!,

Mi ,i 11~ t !5api 11,i
(4) , ~17!

while the local chemical potential is found to satisfy

bm i5 ln
pi 11,i

(2) pi ,i 21
(3)

pi 11,i
(4) pi ,i 21

(4)
2 ln

pi

12pi
. ~18!

From Eqs.~5!, ~17!, and~18! we obtain for the current

^ j i ,i 11& t5aF pi ,i 21
(3)

pi

~12pi !

pi ,i 21
(4)

pi 11,i
(2)

2
pi 12,i 11

(2)

pi 11

~12pi 11!

pi 12,i 11
(4)

pi 11,i
(3) G . ~19!

In these last Eqs.~17!–~19!, densities and correlators ar
local equilibrium quantities. The final form of our kineti
equations as a nonlinear set of differential equations forpi(t)
emerges when we reexpresspi 11,i

(n) in terms ofpi 11 andpi in
the way described above.

For comparison we also consider the ordinary mean-fi
equations. These are obtained by factorizing all correlator
Eqs. ~18! and ~19!, for examplepi 11,i

(1) .pi 11pi . The mean-
field current is then found as

^ j i ,i 11
MF & t5a$pi2pi 111K@pi 21pi~12pi 11!

2~12pi !pi 11pi 12#% ~20!

with K5exp(bV)21.
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B. Spin relaxation

Next we turn to spin relaxation in the linear Ising mode
Rather than using Eq.~10! we immediately choose transitio
rates

wi~s!5
a

2 F12
g

2
s i~s i 111s i 21!G~12ds i ! ~21!

and start from the evolution equations for single spins
given in the original work by Glauber@21#,

d^s i& t

dt
5aF ^s i& t2

g

2
~^s i 11& t1^s i 21& t!2d

1
dg

2
~^s i 11s i& t1^s is i 21& t!G . ~22!

Here,g5tanh 2bJ andd5tanhbh, whereJ.0 denotes the
~ferromagnetic! nearest-neighbor exchange coupling andh a
constant external magnetic field. It is well known that forh
50 these equations become linear and easily soluble.
contrast, forhÞ0, the appearance of correlators^s i 11s i& t in
Eq. ~22! prevents us from obtaining an exact solution. Usi
the well-known representation of Ising spin variables by o
cupation numbers,s i52ni21, and vice versa, we can trea
the correlatorŝ s i 11s i& in perfect analogy tô ni 11ni&. In
particular, Eq.~16! with J54V transforms into a quadratic
equation for̂ s i 61s i&, whose solution, expressed in terms
^s i 61& and^s i&, is substituted into Eq.~22!. This yields our
TDFT equation of motion for spins. Likewise, we obta
from Eq. ~16! the free-energy as functional of the spin de
sity, which could be used in Eq.~10!.

IV. APPLICATION TO INTERFACIAL KINETICS

We now apply the TDFT to problems of the time evol
tion of an initially sharp interface between differently o
dered domains on a linear chain. Our purpose is to prese
quantitative comparison with both Monte Carlo simulati
and simple MF theory with respect to density profiles, sp
density profiles and the respective correlators.

A. Atomic hopping

The length of the chain is taken asM5103. As mentioned
before, boundary sites have fixed occupationp05pM1151.
Symmetrical initial conditions att50 are chosen such tha
we have a vacant region centered around the midpoint of
system,pi(0)50 for 250, i ,750, and complete occupatio
in the complementary space. Fort.0, the initially sharp
density profile will progressively broaden due to diffusio
This is shown in Fig. 1 for 0< i<500 in the case of a repul
sive interaction withbV53. Generally, the shape of profile
depends on how the interaction enters the elementary h
ping rates. Our choice Eq.~8! implies that in regions with
densitiesp*0.5 a particle next to a vacant target site ha
large chance to be repelled by another particle and hence
assume a large jump rate. By contrast, the repulsion will
2-4
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less active in dilute regions. This explains the asymmetry
the profiles in Fig. 1~a!, with a steep drop towards the emp
region. The main conclusion from Fig. 1~a! is the perfect
agreement between profiles from TDFT, shown by the
lines, and from Monte Carlo~MC! simulation~data points!
@22#. To get smooth profiles from simulation, we took ave
ages over 104 Monte Carlo runs. By contrast, the MF profile
in Fig. 1~b! are more symmetric and deviate significan
from those in Fig. 1~a!.

For diffusion processes on~continuous! length scalesx
and time scalest much larger than the elementary hoppi
distance and residence time, we expect the density to de
only on the scaling variableh5x/(2At), provided the initial
conditions can be expressed in terms ofh. This is verified in
Fig. 2~a!, which shows master curvesp(h) obtained from
the profiles in Fig. 1 for different times. In this analysis t
origin of the x axis is chosen to coincide with the initia
density drop ati 5250. As expected from Fig. 1, the TDF
master curve, in contrast to MF theory, practically coincid
with the Monte Carlo master curve.

These results can be analyzed further by the Boltzma
Matano method@25#, which assumes a diffusion equation
the form ]p/]x5]/]x@D„p(x)…]p/]x# to hold. From the
master curvep(h) the concentration-dependent diffusion c
efficient D(p) can be deduced according to

D~p!52
2

~dp/dh!
E

0

p

h~p8!dp8, ~23!

FIG. 1. Comparison of time-dependent density profilespi in the
case of hopping dynamics with repulsive interactionbV53, ob-
tained by different methods.~a! TDFT ~lines! and MC simulation
~data points!. ~b! Kinetic MF theory.
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whereh(p) is the inverse function ofp(h). The integral can
be calculated accurately from the profile of Fig. 2~a! up to
p.0.9, and the results forD(p) are shown in Fig. 2~b!.
Using the MF profile, we recover thep dependence of the
mean-field diffusion constant. This quantity is calculated e
ily by separating from the current Eq.~20! a factor pi 11
2pi , i.e., a discrete gradient of the density, and identifyi
the result with Ficks’ law. One obtains

DMF~p!5D0„11K@p214p~12p!#…, ~24!

with D05aa2, a being the lattice spacing. The expressi
~24! shows a broad maximum aroundp52/3, which reflects
the average effect of the repulsion of particles. The TDF
diffusion constant, however, shows a much sharper m
mum. Moreover, whenp becomes small, it approaches th
valueD0 more rapidly, and thus gives rise to the steepen
of the density profile in the regimep&0.4, as observed in
Fig. 2~a!. This is a correlation effect: In a dilute system,
fast hop of a particle due to the repulsion by a neighbor
particle is a rare event because nearest-neighbor pairs
suppressed,^ni 11ni&,pi 11pi , and hence diffusion is

FIG. 2. ~a! Density profiles shown in Fig. 1 for different time
against the scaling variableh5x/(2At). The lengthx is in units of
the lattice constant andt in units of Dt; see footnote@22#. ~b!
Concentration-dependent diffusion coefficientsD(p) extracted
from the master curves of~a! by the Boltzmann-Matano method
~The normalization factorD0 is the single-particle diffusion con
stant for infinite dilution.!
2-5
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slowed down relative to the MF prediction. This argumen
supplementary to our previous discussion of Fig. 1~a!.

At this point, we remark that such correlations induced
the repulsion of particles are taken into account to a cer
extent even by MF theory when applied to a two-sublatt
structure. Density profiles and effective diffusion coefficien
calculated in this way in a previous study@23# indeed are
similar to those of the present TDFT calculation shown
Figs. 2~a! and 2~b!, respectively.

Because of the important role played by the correlator
TDFT it is of interest to make a direct comparison with co
relators obtained from Monte Carlo simulation. Figure 3 e
emplifies perfect agreement between those of TDFT
simulation, whereas MF-correlators, calculated here as p
uct pi 11pi of the simulated densities, are significantly larg
when the densities are small.

B. Spin relaxation

In our study of ‘‘nonconserved’’ dynamics in the on
dimensional Glauber model@21# we choose a chain of lengt
M5102 and fixed upward spins at the boundaries,s0
5sM1151. Our initial condition att50 now iss i521 for
40< i<60 ands i511 for the remaining spins. Notice tha
in the caseh50 simple MF theory in the spirit of this work
becomes exact because the correlators in Eq.~22! drop out.
To depart from this trivial situation we introduce a small fie
with bh520.1, which favors downward spin orientatio
Spin-density profiles in the region 0< i<50 for bJ52 at
different timest.0 are presented in Fig. 4~a!, where the full
lines correspond to TDFT, and data points to simulation. T
agreement is very good, although not perfect. Generally,
spins in the interior of the system relax towards the equi
rium in the external field. Spins near the boundary are
pected to relax towards an equilibrium profile, which deca
from the boundary (s051) towards the interior (s i'21)
on a length given by the correlation lengthj. For the tem-
perature considered,j.5a. During the course of this relax
ation, simple MF theory, based on a factorization of the l
two terms in Eq.~22!, gives quite different results@Fig. 4~b!#.

FIG. 3. Correlatorŝ ni 11ni& t at t5104 from MC simulation
compared to correlators computed from TDFT and MF theory,
ing the same Monte Carlo density profilepi ~upper curve! as input.
The TDFT correlators are indistinguishable from MC correlators
this plot.
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First of all, the overall process is much faster than in F
4~a!. Second, within the region of the initial upspin domain
predicts a constantly decreasing plateau, which is not
served in Fig. 4~a!. The origin of these failures of MF theor
becomes clear when we look at Fig. 5: Monte Carlo and
almost identical TDFT correlatorŝs i 11s i& t stay close to
unity throughout the system, in contrast to the MF factoriz
tion, and stabilize the respective spin configuration. He

-

FIG. 4. Comparison of time-dependent spin-density profiles
the Glauber model withbJ52 andbh520.1, obtained by differ-
ent methods.~a! TDFT ~lines! and MC simulation~data points!. ~b!
Kinetic MF theory.

FIG. 5. Correlatorŝ s i 11s i& t at t5102 from MC simulation
compared to correlators computed from TDFT and MF theory,
ing the same MC spin-density profilês i& t as input. The TDFT
correlators are nearly indistinguishable from MC correlators in t
plot.
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the relaxation process progresses only by a successive b
ening of the interfacial region between the upspin and do
spin domains and not by a decaying plateau.

V. SUMMARY AND OUTLOOK

Applying a local equilibrium approximation to the mast
equation for atomic or spin configurations, kinetic equatio
for particle or spin densities were derived, which are co
patible with the exact thermodynamics. The derivation w
largely based on concepts from density-functional theory.
netic equations obtained have the form of generali
‘‘model B’’ or ‘‘model A’’ equations in the language of Re
@17#, where thermodynamic driving forces originate from t
exact free-energy functional. This ‘‘time-dependent dens
functional’’ ~TDFT! scheme is tested against Monte Ca
simulations for both a one-dimensional hopping model a
the Glauber model, where the exact free-energy functiona
known. Studying the dynamics of the interface between
ferent domains, the TDFT yields excellent agreement w
simulations with respect to density or spin-density profi
and local correlation functions. The success of this the
appears to be a consequence of the fast relaxation of cor
tors towards their local equilibrium values.

Under the ultimate aim to develop theoretical tools fo
description of phase transformation processes in real ma
als, several extensions of the present work are neces
First of all, one needs reliable approximations for the fre
energy functional in higher dimensions. For two-dimensio
lattice systems, a step in this direction has been taken
cently @24#, which was based on an extension of the te
niques in Ref.@19#. Secondly, one would like to treat mult
component systems. In that case, local equilibri
distributions of the type~1! may be insufficient to describ
interdiffusion currents related to nondiagonal Onsager co
ficients @6#. To incorporate such effects into the TDF
scheme is an open question that deserves further study.
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APPENDIX: DERIVATION OF GENERALIZED
‘‘MODEL A ’’ EQUATIONS

The derivation of Eq.~10! proceeds in steps with som
similarity to Ref.@8#. In the present ‘‘nonconserved’’ case w
start from the master equation for single-spin flips, see, e
Ref. @21#, to obtain the time derivative of single-spin ave
ages. Exact averages are in turn approximated by aver
^•••& t with respect to the local equilibrium distributio
P( loc)(s,t), which has the same form as Eq.~1! apart from a
sign change in the second term in the exponent.@This is
because the auxiliary fieldshi(t) in Eq. ~1! have the meaning
of effective site energies, while they are taken here as ef
tive magnetic fields.# In this way we arrive at

d^s i& t

dt
522^wi~s!s i& t. ~A1!

The summation over alls in the definition of the average o
the right-hand side of Eq.~A1! involves a summation ove
s i561, which we treat with the help of the detailed balan
condition,

(
s i

exp@2b„H~s!2his i…#wi~s!s i

5 1
2 (

s i

e2bH(s)wi~s!@ebhis is i1e2bhis i~2s i !#

5(
s i

e2bH(s)wi~s!sinhbhi . ~A2!

In the last step we have used sinh(bhisi)5si sinh(bhi) and
s i

251. To restore the expression forP( loc)(s,t) we multiply
and divide Eq.~A2! by exp(bhi). Finally, it follows from the
form of P( loc)(s,t) that single-spin averages and the fiel
h(t) are connected byhi(t)1h5]F/]^s i& t , which is analo-
gous to Eq.~3!. Here, F is the intrinsic free-energy as
functional of the spin density. Combination of these resu
with Eq. ~A1! yields Eqs.~10! and ~11!.
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