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Time-dependent density-functional theory, proposed recently in the context of atomic diffusion and nonequi-
librium processes in solids, is tested against Monte Carlo simulation. In order to assess the basic approximation
of that theory, the representation of nonequilibrium states by a local equilibrium distribution function, we focus
on one-dimensional lattice models, where all equilibrium properties can be worked exactly from the known
free energy as a functional of the density. This functional determines the thermodynamic driving forces away
from equilibrium. In our studies of the interfacial kinetics of atomic hopping and spin relaxation, we find
excellent agreement with simulations, suggesting that the method is also useful for treating more complex
problems.
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I. INTRODUCTION are consistent with the exact equilibrium properties. If nec-
essary, additional approximations with respect to equilibrium
Establishing a link between macroscopic laws of diffusionquantities can be carried out in a separate step.
and relaxation with a microscopic master equation for atomic The above-mentioned kinetic theories mostly focus on
degrees of freedom has remained a fundamental problem purely dissipative processes in discrete lattice systems. For
nonequilibrium statistical mechanics. Moreover, numerousluid systems, the derivation of nonlinear transport equations
examples exist in metallurgy, semiconductor device technolfor hydrodynamic variables is a more complicated subject.
ogy, glass science, and polymer science, where control ove&some generalizations of Moris’ well-known projection op-
the time development of microstructures is crucial in theerator technique and mode coupling approximations to situ-
design of materials with special mechanical, electrical, andtions far away from equilibriurfil 3,14, have been applied,
magnetic properties. Hence, there is a need also from a prater example, to problems of nonlinear hydrodynamics, the
tical viewpoint to derive tractable kinetic equations incorpo-glass transitiorf15], and to granular flow§16].
rating specific materials properties, so that processes like Our aim in this paper is to apply the TDFT scheme to
nucleation, spinodal decomposition, and magnetic relaxatiopurely dissipative “conserved” atomic migration and “non-
can be treated in a realistic manner. conserved” spin dynamics processes in one-dimensional lat-
The simplest approach is to study mean-field kinetic equatice models for which the exact free-energy functional is
tions, derived from the master equation by neglecting anyknown. This enables us to separate out and to test the local
atomic correlation effectgl—3|. Such equations suffer from equilibrium assumption against Monte Carlo simulation.
the obvious drawback that their stationary solutions yield theSpecifically, we study the temporal evolution of domains
mean-field phase diagram, which may differ even qualitawith different ordering, and of the associated interface. It is
tively from the correct phase diagram. Several routes foddemonstrated that in these problems the TDFT shows re-
improvement have been proposed in the literature, includingnarkable quantitative accuracy, suggesting that this method
the path probability method4,5], effective Hamiltonian may be useful also under more general conditions.
methods[6] or time-dependent density-functional theory In Sec. Il we briefly recall our basic approach. Section IlI
(TDFT) [7-9]. The latter approach implements the idea ofstarts out with an exact free-energy functional for a one-
local equilibrium and leads to thermodynamic driving forces,dimensional lattice and provides expressions for local corr-
which in principle are derived from an exact free-energyelators in terms of particle densities. With these results we
functional. Density functional theories are normally formu- arrive at a closed system of kinetic equations on the single-
lated for continuous fluid systemd.0], but adaptation to particle level. Following the classification by Hohenberg and
discrete lattice systems is straightforwdrtil,12. In this  Halperin[17] these equations take the form of generalized
way one can obtain generalized mean-field kinetic equation$model B” or “model A” equations in cases of a conserved
for single-particle or single-spin densities, which in principleor a nonconserved order parameter, respectively. Solving
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these equations, we subsequently discuss the time evolutigrspectively. Averaged occupation numbers and correlation
of an initially sharp interface between two differently or- functions are determined from derivatives of a free-energy
dered domains in both of these cag&€gc. I\). Excellent  functionalF(p) associated with the Hamiltonidt(n). Spe-
agreement with Monte Carlo simulations is found, in contrastifically, p(t) is determined by the set of equations

to ordinary mean-fieldMF) theory that produces substantial

deviations. hi(t) + i (P(1)= ot » (3

Il. OVERVIEW OF TIME-DEPENDENT with w4, the overall chemical potential, and
DENSITY-FUNCTIONAL THEORY (TDFT)

FOR STOCHASTIC LATTICE SYSTEMS
wmi(p)=3dF(p)/ap;, (4)

the local chemical potential as functional pf Much expe-

) 9 . ) . . rience has been gained during the last two decades on how to
equivalent sites, which are either S|_mply OCCUp'emi(:_l) constructF(p) from a given HamiltoniarH(n). In the sub-

or vacant (;=0), so that occupation numbers satisfy _sequent considerations we, therefore, assiti) to be
=n;. The hopping process is described by a master equatioghown. Since in the framework of DFT occupational corre-
for probabilitiesP(n,t) of finding an occupational configu- |5ion functions are functionals g, we can formally regard
ration n={n;} at time t. As elementary steps we assume Eq. (2) as the desired closed set of equationspith).

moves of a single particle from an occupied site to a vacant ‘|, order to make this procedure explicit and to establish a
nearest-neighbor site. The associated ratggn) for adjia-  connection with thermodynamic driving forces, we again re-

cent sitesi andk to exchange their occupation satisfy the ¢4 Ref. [8], where it is shown that the average current can
detailed balance condition with respect to a given lattice gage \ritten as

HamiltonianH(n).

A detailed description of TDFT is found in Ref8]. .
Hence we need to recall only the main steps, and add some (Ji0=MiOLAI(1) — AD)]. ®)
remarks as to their physical content. The basic approxim
tion is to replace the distributioR(n,t) by the local equi-
librium distribution

A. Atomic hopping
Let us begin with hopping of particles on a lattice of

he guantities

Ai(t)=exd Bui(p(1))] (6)

}’ (1) are local activities, whose discrete gradiéaliong the bond
connecting andk) plays the role of a thermodynamic force

1
loc — —
P™¢(n,t) 70 exp{ B
- . . that drives the current. The quantity
where deviations from equilibrium are represented in terms

of time-dependent single-particle fielti§t) ={h;(t)}. Z(t) .

is a normalization factor, which at equilibriuphm(t) =0] re- _ -

duces to the canonical partition function. Requiring self- Mi ()= Z{wism) ex B(hi(Om +h(On) e, (7)

consistency on the single-particle level allows us to eliminate

h(t) in favor of mean occupation numbet)={p;(t)} where M; ((t)=M,;(t), is a mobility coefficient that de-

with p;(t)=(n;);, where(- - -); denotes an average with re- pends on the actual nonequilibrium state. Further discussion

spect to the distributioril). In this way a closed system of of Eq. (7) simplifies when we choose the hopping rates

equations fop(t) can be derived. w; (n) such that they depend only on the energy in the
To carry through this program we start from the equationinitial state, i.e.,

of continuity, which follows directly from the original master

equation. Replacement of exact averages by local equilib- Wi ()= a[n(1—ny)efi+n(1—n,)efH]. ®)

rium averages gives ’

H(n)+ X, hi(t)n,

The first term describes hopping frdno k, with a thermally
dp;(t) _ activated rate determined by the interaction enefigyof a
TJFEK (Jixt=0, (2)  particle at sitei with its environment.a is some bare rate
constant. The reverse hopping process is described by the
with known expressiong8] for the currentj; (n) from sitei ~ Second term in Eq8). With this expression fow; ,(n), one
to sitek in terms ofw; ,(n). Notice that at any instant of time ¢an show[8] that Eq.(7) transforms into
the exponent in Eq(l) describes an inhomogeneous lattice
gas, which involves a spatially varying single-particle poten- Mi k() =a((1—n)(1—ny));. 9
tial h(t). Hence, calculation of averages from Ef) is pre-
cisely the kind of problem treated by density-functional At this stageM; (t) does no longer explicitly depend d¢n
theory (DFT) in classical statistical mechanics. There, onePhysically, Eq(9) tells us that the mobility coefficient based
considers a class of systems with fixed interactions and arbbn Eq. (8) is given by the nearest-neighbor vacancy cor-
trary single-particle potentials, specified hereHbn) andh, relator.
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It should be kept in mind that in this TDFT scheme all free energy decreases monotonously with time until the equi-
deviations from equilibrium are described in a mean-fieldlibrium condition is satisfied. For hopping, the rate of change
manner in the sense that the underlying distribution functiorof the free energy is given by
(1) deviates from the canonical distribution merely by single-
particle terms. Relationships between occupational correla- oF dp,
tors and densitiep(t), which enter this theory, are local in 2 oo dt
time and are given by the equilibrium theory. This implies Pi
the assumption that correlators relax fast to their local equi-
librium values, compared with time scales characterizing the _
evolution of p(t). Ordinary kinetic mean-field theory is re- = _kBTg M X (e —€7k)
covered when we use mean -field expressionsuf@¢p) and '
replace Eq.(9) by hM | (t)I r;1(1 pl(t))(l ?k(t)) By kT
contrast, in TDFT the local chemical potential appearing in fel Xi _ X
Eq. (6) is defined by the exact chemical potential functional % Mi (X =) (€7~ €79 =<0, (12
so that Eq.(2) together with Eq.(5) describes relaxation
towards the exact equilibrium state. Moreover, the expreswhere we have used Eq), (5), and(6) together with the
sion(9) for the mobility preserves local correlation effects in abbreviation d(8F/dp;)=x;, and M, =M,;. Currents
the jump dynamics. through the boundaries of the system are supposed to be
zero. The inequality in Eq12) arises fromM; >0, see Eq.

(7), and from —y)(e*—eY)>0 for x#y. The equality sign
in Eqg. (12) holds if and only ifx;=x, for all i andk, which

To exemplify the dynamics of a nonconserved order pameans thaj; = const.
rameter, we study spin relaxation in a kinetic Ising model.  Similarly, for the kinetic Ising spin model, the total free
Elementary transitions in the underlying master equation arenergy including the coupling to the external fitldatisfies
supposed to be individual spin flipg;— — o, where o
==+1. By w;(o) we denote the associated rate in an initial d
spin configurationo. The local equilibrium distribution -
P(°9 (¢ t) is analogous to Eq(1). It involves the Ising dt
Hamiltonian H(o?) supplemented by time-dependent mag-
netic fields h(t), which couple to the spins in the form
—2;hij(t)o;. As shown in the Appendix, the equations of
motion read

B. Spin relaxation

(F—hzi ai)=—kBT; I\ X, sinhx,<0, (13)

where x, .= B(dF/d{a)—h). The inequality follows be-
causel', >0 [see Eq.11)] andx sinhx>0 for x#0. Equa-
tion (13) becomes an equality #F/9{a),=h for all k.

[II. ONE DIMENSION: EXACT FUNCTIONALS

(10 To test the local equilibrium distributiofl) it is desirable

to avoid any approximation with respect to static properties.
S . This can be achieved by using exact free-energy functionals,
with kinetic coefficients which are available for certain one-dimensional systems
[18-20.

d{oi) . IF(( o))
Tz—l“i(t)smhﬂ< o h),

Ti(t)=2(w;(o)e” AMO), (12) A. Atomic hopping

F is the intrinsic free-energy functional associated with the, For a Ia}ttlce gas .V_V'th r)eare§t-ne|ghbor Interactions on a
exchange interaction, and an overall constant magnetic I|_near gham of gltes, 1<i<M; with occupied .boundary
field. Equation(10) again displays the exact thermodynamic SIt€S ati=0 andi=M+1, the free-energy functional reads
driving force in the spirit of TDFT. It can be regarded as a[lg]
generalized “modeA” equation in the classification by Ho-
henberg and Halperifl7], whereas Eqgs(2), (5), and (6)
constitute generalized “mod@” equations. Note that suffi- ~ F{P}= VZ Pyt keT Z
ciently close to equilibrium one can ignohét) in Eq. (11)

M-1 4

2 |+1||np|+1 pilnpi

and linearize the sinh term in E¢L0) to obtaind{o;)/dt

=—2B(W;(0))eq( IF/3{a;)—h). The kinetic coefficient is —(1=p)In(l-p)|, (14

then simply given by the equilibrium spin flip rate

(Wi(0))eq- whereV denotes the interaction constant, apfd)lyi with n
=1, ... ,4 are théwo-point correlators for the four possibili-

C. Consistency with thermodynamics ties of particles and holes on siteand sitei +1,

Finally it is easy to show that our evolution equations are
consistent with the second law of thermodynamics. The total p,+1, (Ni+1ny),
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pi(i)l,i =((1=nj;)n)=p;— piq—)l,i ,
pi(i)l,i =N 1(1=ny))=pis1— pi(~l+)1,i '

P =((1=ni )(1-n))y=1-p—pis1+pYy; .

(19
From the techniques of Ref19] it follows that
pi(i)l,ipi(i)l,i: i(«2+)1,i i(i)l,ie7BV! (16)

a relation, which is equivalent to the quasichemical ap-

proach. Given these relations, it turns out ta& dp{?;

=0. This suggests thd may be minimized also with re-
spect to correlators in cases where these cannot be calculated

explicitly.

The boundary conditions for the correlators @i&=p;
and p{i},y=pu. For 1<i=M—1, combination of Eq.
(15) with Eg. (16) yields a quadratic equation fg*);; . In
this way the representation ii)lyi as functionals ofp is
completed. The fact that"”; . only depends om; . ; andp;
clearly is a special feature in one dimension.

PHYSICAL REVIEW B5 066112

B. Spin relaxation

Next we turn to spin relaxation in the linear Ising model.
Rather than using Eq10) we immediately choose transition
rates

a

wi(o)= 5

[1_ 0Tt o y)|(1-60) (@D

and start from the evolution equations for single spins as
given in the original work by Glaubd1],

d<‘7i>t:
dt

o (o= 3 (01 )+ (0120 = b

oy
+7(<Ui+10’i>t+<0’i0ifl>t) : (22

Here, y=tanh 28J and §=tanhgh, whereJ>0 denotes the
(ferromagnetig nearest-neighbor exchange coupling &nal
constant external magnetic field. It is well known that for
=0 these equations become linear and easily soluble. By
contrast, foh+ 0, the appearance of correlatdrs , 1o;); in

The kinetic equations derived in Sec. Il are now combinedEd- (22) prevents us from obtaining an exact solution. Using

with Eq. (14). Evidently, from Eq.(9),

Miiea()=ap®,;, (17)

while the local chemical potential is found to satisfy

i(i)li F?:)fl Pi
Bui=In (4)’ ('4) —Inl_ - (19
i+1iMii-1 Pi

From Egs.(5), (17), and(18) we obtain for the current

(3)
: Piit1 (1—pi)
(Jiji+th=a —IF;_ @) I i(f-)l,i
: =1

pPai1 (1= pis1) 3)
- (4) pi+l,i .
Pi2j+1

Pi+1 19

In these last Eqs(17)—(19), densities and correlators are
local equilibrium quantities. The final form of our kinetic

equations as a nonlinear set of differential equationp /)
emerges when we reexprepq@r)Li in terms ofp;, 1 andp; in
the way described above.

the well-known representation of Ising spin variables by oc-
cupation numbersg;=2n;—1, and vice versa, we can treat
the correlatorg o 10;) in perfect analogy tdn;.1n;). In
particular, Eq.(16) with J=4V transforms into a quadratic
equation fo o . 1 0;), whose solution, expressed in terms of
(oi+1) and{a;), is substituted into E¢22). This yields our
TDFT equation of motion for spins. Likewise, we obtain
from Eq. (16) the free-energy as functional of the spin den-
sity, which could be used in Eq10).

IV. APPLICATION TO INTERFACIAL KINETICS

We now apply the TDFT to problems of the time evolu-
tion of an initially sharp interface between differently or-
dered domains on a linear chain. Our purpose is to present a
quantitative comparison with both Monte Carlo simulation
and simple MF theory with respect to density profiles, spin-
density profiles and the respective correlators.

A. Atomic hopping

The length of the chain is taken k&= 10°. As mentioned
before, boundary sites have fixed occupat@r py+1=1.
Symmetrical initial conditions at=0 are chosen such that
we have a vacant region centered around the midpoint of the

For comparison we also consider the ordinary mean-fielgystem,p;(0)=0 for 250<i <750, and complete occupation
equations. These are obtained by factorizing all correlators iim the complementary space. For0, the initially sharp

Egs.(18) and (19), for examplep{?; ;=p;1p;. The mean-
field current is then found as
(1% = adpi=pis 1+ KIpi - 1pi(1=pjs 1)
—(1=pi)pi+1Pi+2]}
with K=exp({@BV)—1.

(20

density profile will progressively broaden due to diffusion.
This is shown in Fig. 1 for &i<500 in the case of a repul-
sive interaction withBV = 3. Generally, the shape of profiles
depends on how the interaction enters the elementary hop-
ping rates. Our choice Ed8) implies that in regions with
densitiesp=0.5 a particle next to a vacant target site has a
large chance to be repelled by another particle and hence will
assume a large jump rate. By contrast, the repulsion will be

066112-4



KINETICS IN ONE-DIMENSIONAL LATTICE GAS AND.. .. PHYSICAL REVIEW E65 066112

1 1
a) a)
08 |
075 |
06 |
& % 05 o \. TDFT/
04 | Kinetic MF-theory—YX '} /MC simulation
0z | 025 |
0 0 L 1 1
500 ) -1 0 1
n=x/"
1
50 ‘
b) —— TDFT /MC simulation
08+ oMY Kinetic MF-theory b)
40
06 -
_ g*r
04t N A
A 20
02
10 ¢
0
500 0 ‘
i 0 0.3 0.6 0.9
p
FIG. 1. Comparison of time-dependent density profiies the ) ) o ) )
case of hopping dynamics with repulsive interactj¥=3, ob- FIG. 2. (a) Density profiles shown in Fig. 1 for different times
tained by different method$a) TDFT (lines and MC simulation ~ against the scaling variable=x/(2). The lengthx is in units of
(data points (b) Kinetic MF theory. the lattice constant and in units of At; see footnote[22]. (b)

Concentration-dependent diffusion coefficienB(p) extracted
less active in dilute regions. This explains the asymmetry ofrom the master curves d8) by the Boltzmann-Matano method.
the profiles in Fig. (a), with a steep drop towards the empty (The normalization factoD, is the single-particle diffusion con-
region. The main conclusion from Fig(al is the perfect stant for infinite dilution)
agreement between profiles from TDFT, shown by the full
lines, and from Monte CarloMC) simulation (data point$
[22]. To get smooth profiles from simulation, we took aver-
ages over 1DMonte Carlo runs. By contrast, the MF profiles

2 ; ; - p=0.9, and the results foD(p) are shown in Fig. @).
If?oril%holég)ir?rlgigm(ﬂ)z;)e. symmetric and deviate significantly Using the MF profile, we recover the dependence of the

For diffusion processes ofcontinuou$ length scalesc mean-field diffusion constant. This quantity is calculated eas-
and time scales much larger than the elementary hoppingily by separating from the current Eq20) a factorpi;
distance and residence time, we expect the density to deperdPi, i-€., a discrete gradient of the density, and identifying
only on the scaling variable=x/(2+/t), provided the initial ~ the result with Ficks’ law. One obtains
conditions can be expressed in termspofThis is verified in
Fig. 2(a), which shows master curvgy z) obtained from Ve 5
the profiles in Fig. 1 for different times. In this analysis the DY (p)=Do(1+K[p“+4p(1—p)]), (24
origin of the x axis is chosen to coincide with the initial
density drop af =250. As expected from Fig. 1, the TDFT \un b — va? a being the lattice spacing. The expression

master curve, in contrast to MF theory, practically coincides(24) shows a broad maximum aroupe: 2/3, which reflects

with the Monte Carlo master curve. . :
These results can be analyzed further by the Boltzmannt-he average effect of the repulsion of particles. The TDFT-

Matano method25], which assumes a diffusion equation of diffusio,\r;l constant, r?owebver, shows a”m'uch sharpher mﬁXi'
the form dp/dx=al X[ D(p(x))dp/dx] to hold. From the mum. Moreover, wherp becomes small, it approaches the

master curve( ) the concentration-dependent diffusion co- Yalu€Do more rapidly, and thus gives rise to the steepening
efficient D(p) can be deduced according to of the density profile in the regimp=<0.4, as observed in
Fig. 2(a). This is a correlation effect: In a dilute system, a

5 . fast hop of a particle due to the repulsion by a neighboring
D(p)= — Ndp', 23 particle is a rare event because nearest-neighbor pairs get
(P) (dp/dn) fo 7(p)dp 3 suppressed,{n; . 1N;)<pi.1p;, and hence diffusion is

wherez(p) is the inverse function gb( ). The integral can
be calculated accurately from the profile of Figaj2up to
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FIG. 3. Correlators(n;,n;); at t=10* from MC simulation
compared to correlators computed from TDFT and MF theory, us-
ing the same Monte Carlo density profie (upper curvg as input.
The TDFT correlators are indistinguishable from MC correlators in
this plot.

slowed down relative to the MF prediction. This argument is
supplementary to our previous discussion of Fi@).1

At this point, we remark that such correlations induced by
the repulsion of particles are taken into account to a certain
extent even by MF theory when applied to a two-sublattice
structure. Density profiles and effective diffusion coefficients
calculated in this way in a previous stufi®3] indeed are i
similar to those of the present TDFT calculation shown in
Figs. 2a) and 2b), respectively.

Because of the important role played by the correlators i
TDFT it is of interest to make a direct comparison with cor-
relators obtained from Monte Carlo simulation. Figure 3 ex-
emplifies perfect agreement between those of TDFT an}.

simulation, whereas MF-correlators, calculated here as pro 4('St g;cﬂlr,]c}h\?vit%\i/re]rtiltla '?;O?(fﬁsof'?hg“i“'ncigaﬁsfr ii}hggrrl;i?%
uct p;, 1p; of the simulated densities, are significantly larger ™" ' gion | pspin d
when the densities are small. predicts a constantly decreasing plateau, which is not ob-

served in Fig. 4a). The origin of these failures of MF theory
becomes clear when we look at Fig. 5: Monte Carlo and the
B. Spin relaxation almost identical TDFT correlatoréo, , 10;); stay close to
In our Study of “nonconserved” dynamics in the one- unity throughout the system, in contrast to the MF factoriza-
dimensional Glauber modE21] we choose a chain of length tion, and stabilize the respective spin configuration. Hence
M=10* and fixed upward spins at the boundaries,
=oy+1=1. Our initial condition at=0 now iso;=—1 for 1 ==
40<i=<60 ando;=+1 for the remaining spins. Notice that
in the caseh=0 simple MF theory in the spirit of this work

FIG. 4. Comparison of time-dependent spin-density profiles in
r{he Glauber model witiBJ=2 andBh= —0.1, obtained by differ-
ent methods(a) TDFT (lines) and MC simulation(data points. (b)
Kinetic MF theory.

becomes exact because the correlators in(E2). drop out. » 02
To depart from this trivial situation we introduce a small field 2
with Bh=—0.1, which favors downward spin orientation. g o
Spin-density profiles in the regions0i<50 for 8J=2 at gﬁ

\%

different timest>0 are presented in Fig(d), where the full
lines correspond to TDFT, and data points to simulation. The
agreement is very good, although not perfect. Generally, the

|
<
n

spins in the interior of the system relax towards the equilib- a1 s ‘ s :

rium in the external field. Spins near the boundary are ex- 0 10 0 40 50
pected to relax towards an equilibrium profile, which decays !

from the boundary ¢,=1) towards the interior ¢;~ —1) FIG. 5. Correlatorga;, o), at t=1C¢ from MC simulation

on a length given by the correlation length For the tem-  compared to correlators computed from TDFT and MF theory, us-
perature considered~5a. During the course of this relax- ing the same MC spin-density profiler;); as input. The TDFT
ation, simple MF theory, based on a factorization of the lastorrelators are nearly indistinguishable from MC correlators in this
two terms in Eq(22), gives quite different resul{$ig. 4(b)]. plot.
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the relaxation process progresses only by a successive brogubrted in part by the Deutsche Forschungsgemeins¢hft
ening of the interfacial region between the upspin and down1636/2-1, SFB 513
spin domains and not by a decaying plateau.

APPENDIX: DERIVATION OF GENERALIZED

V. SUMMARY AND OUTLOOK ‘MODEL A" EQUATIONS

Applying a local equilibrium approximation to the master _ 'he derivation of Eq(10) proceeds in steps with some
equation for atomic or spin configurations, kinetic equationsSimilarity to Ref.[8]. In the present “nonconserved” case we
for particle or spin densities were derived, which are com-Start from the master equation for single-spin flips, see, e.g.,
patible with the exact thermodynamics. The derivation wadXef- [21], to obtain the time derivative of single-spin aver-
largely based on concepts from density-functional theory. Ki-29€S. Exact averages are in turn approximated by averages
netic equations obtained have the form of generalized I.o.c>)t with respect to the local equilibrium distribution
“model B” or “model A” equations in the language of Ref. P~ (o:t), which has the same form as Hd) apart from a
[17], where thermodynamic driving forces originate from theSIgn change in the second term in the expongfhis is
exact free-energy functional. This “time-dependent density2ecause the auxiliary fieldg(t) in Eq. (1) have the meaning
functional” (TDFT) scheme is tested against Monte Carlo©f effective site energies, while they are taken here as effec-
simulations for both a one-dimensional hopping model andive magnetic fieldd.In this way we arrive at
the Glauber model, where the exact free-energy functional is
known. Studying the dynamics of the interface between dif- d{oi) P (A1)
ferent domains, the TDFT vyields excellent agreement with dt (wil@) i)

simulations with respect to density or spin-density profiles ) _ L
and local correlation functions. The success of this theory N& Summation over air in the definition of the average on

appears to be a consequence of the fast relaxation of correl§1 fight-hand side of EqA1) involves a summation over
tors towards their local equilibrium values. o;==*1, which we treat with the help of the detailed balance

Under the ultimate aim to develop theoretical tools for acondition,
description of phase transformation processes in real materi-
als, several extensions of the present work are necessary. _ o T ;
First of all, one needs reliable approximations for the free- (zrl exil — f(H(o) ~hio)wi( @) o
energy functional in higher dimensions. For two-dimensional
lattice systems, a step in this direction has been taken re- _1 —BH(0)\n/. Bhioi . 4 A= Bhioi _
cently [24], which was based on an extension of the tech- 2 ; © wi(o)[eTi "o +e (=a)]
niques in Ref[19]. Secondly, one would like to treat multi-
component systems. In that case, local equilibrium :2 e—ﬁH(o-)W_(a.)SinhlBh_. (A2)
distributions of the typ&1) may be insufficient to describe P ' '
interdiffusion currents related to nondiagonal Onsager coef- i )
ficients [6]. To incorporate such effects into the TDFT Inzthe last step we have used S'ﬁhf‘gic)):"i sinh(ghy) and
scheme is an open question that deserves further study. i =1 To restore the expression fif (o,t) we multiply
and divide Eq(A2) by exp(Bh;). Finally, it follows from the
ACKNOWLEDGMENTS form of P(°9) (g t) that single-spin averages and the fields
h(t) are connected bly;(t) + h=dF/d(o;);, which is analo-
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